A Quasisymmetric Function Generalization of the Chromatic Symmetric Function
نویسنده
چکیده
The chromatic symmetric function XG of a graph G was introduced by Stanley. In this paper we introduce a quasisymmetric generalization X G called the k-chromatic quasisymmetric function of G and show that it is positive in the fundamental basis for the quasisymmetric functions. Following the specialization of XG to χG(λ), the chromatic polynomial, we also define a generalization χ k G(λ) and show that evaluations of this polynomial for negative values generalize a theorem of Stanley relating acyclic orientations to the chromatic polynomial.
منابع مشابه
Chromatic Quasisymmetric Functions and Hessenberg Varieties
We discuss three distinct topics of independent interest; one in enumerative combinatorics, one in symmetric function theory, and one in algebraic geometry. The topic in enumerative combinatorics concerns a q-analog of a generalization of the Eulerian polynomials, the one in symmetric function theory deals with a refinement of the chromatic symmetric functions of Stanley, and the one in algebra...
متن کاملPower Sum Expansion of Chromatic Quasisymmetric Functions
The chromatic quasisymmetric function of a graph was introduced by Shareshian and Wachs as a refinement of Stanley’s chromatic symmetric function. An explicit combinatorial formula, conjectured by Shareshian and Wachs, expressing the chromatic quasisymmetric function of the incomparability graph of a natural unit interval order in terms of power sum symmetric functions, is proven. The proof use...
متن کاملTutte Polynomials for Directed Graphs
The Tutte polynomial is a fundamental invariant of graphs. In this article, we define and study a generalization of the Tutte polynomial for directed graphs, that we name B-polynomial. The B-polynomial has three variables, but when specialized to the case of graphs (that is, digraphs where arcs come in pairs with opposite directions), one of the variables becomes redundant and the B-polynomial ...
متن کاملUnit Interval Orders and the Dot Action on the Cohomology of Regular Semisimple Hessenberg Varieties
Motivated by a 1993 conjecture of Stanley and Stembridge, Shareshian and Wachs conjectured that the characteristic map takes the dot action of the symmetric group on the cohomology of a regular semisimple Hessenberg variety to ωXG(t), where XG(t) is the chromatic quasisymmetric function of the incomparability graph G of the corresponding natural unit interval order, and ω is the usual involutio...
متن کاملDescents, Quasi-Symmetric Functions, Robinson-Schensted for Posets, and the Chromatic Symmetric Function
We investigate an apparent hodgepodge of topics: a Robinson-Schensted algorithm for (3+ 1)-free posets, Chung and Graham’s G-descent expansion of the chromatic polynomial, a quasi-symmetric expansion of the path-cycle symmetric function, and an expansion of Stanley’s chromatic symmetric function XG in terms of a new symmetric function basis. We show how the theory of P-partitions (in particular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 18 شماره
صفحات -
تاریخ انتشار 2011